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1. INTRO/DATASET 
Heart disease is the leading cause of death worldwide, responsible for nearly 18 

million deaths annually. Supervised learning offers a powerful approach to accelerate early 
detection by analyzing clinical data–saving time, reducing healthcare costs, and improving 
patient outcomes. This project focuses on predicting the presence or absence of 
cardiovascular disease using supervised binary classification. The Heart Failure Prediction 
dataset was created by compiling five existing heart disease sources: Cleveland, 
Hungarian, Switzerland, Long Beach VA, and Stalog. After cleaning and integration, the 
final dataset contains 918 patients and 11 clinical features commonly associated with heart 
disease risk. 
 

1) Age 
2) Sex 
3) Chest Pain Type  

a) TA: Typical Angina 
b) ATA: Atypical Angina 
c) NAP: Non-Anginal Pain 
d) ASY: Asymptomatic  

4) Resting Blood Pressure (mmHg) 
5) Cholesterol Level (mm/dl) 
6) Fasting Blood Sugar (1 if > 120 mg/dl, else 0) 
7) Resting ECG 

a) Normal 
b) ST = ST-T wave abnormality 
c) LVH = Left Ventricular Hypertrophy 

8) Max Heart Rate (range 60-202) 
9) Exercise Angina (Y or N) 
10) Oldpeak: ST depression induced by exercise relative to rest 
11) ST Slope: slope of the peak exercise ST segment 

a) Up = upsloping 
b) Flat = flat 
c) Down = downsloping 

12) Heart Disease = TARGET Y  
a) 1 = presence of heart disease 
b) 0 = no heart disease  

 
 
2. PREPROCESSING 

The most important step in supervised learning is ensuring the dataset is both clean 
and physiologically plausible. The dataset did not contain any missing (NaN) values, 
however, several features included medically implausible entries. Specifically, rows with 
Resting Blood Pressure (RestingBP) or Maximum Heart Rate (MaxHR) equal to zero were 

https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction
https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction
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removed. Similarly, any negative values in Oldpeak were removed. This cleaning step 
slightly reduced the dataset, from 918 to 904 patients, and was preferred over other value 
replacement strategies to avoid introducing unrealistic values. To mitigate the influence of 
outliers without discarding additional patients, Cholesterol values were clipped at an upper 
limit of 400 mg/dL, capping extremely high values while preserving the data. 

Following this, the dataset was split into three mutually exclusive subsets: training 
(65%), validation (20%), and test (15%). Stratified sampling ensured that the proportion of 
positive vs. negative heart disease cases remained consistent across all subsets, while a 
random state of 42 was used to maintain reproducibility. 

A challenge arose with the Cholesterol feature, where 159 patients had a recorded 
value of 0 mg/dL, which is clinically invalid. Rather than dropping a large portion of the 
dataset, an Iterative Imputer was chosen as an informed approach to replace these invalid 
values. This imputation strategy provided a more physiologically meaningful alternative to 
using simple mean or median imputation. The scikit-learn’s IterativeImputer method was set 
up to predict cholesterol values for each patient that had a 0 value based on the continuous 
features: Age, RestingBP, MaxHR, and Oldpeak. The imputation was performed following 
the train-test splits, so the Imputer was only trained on the training set to prevent data 
leakage. The Imputer was then applied to all split sets. Due to any introduced variance in 
this step, despite taking a well-suited approach to filling in these physiologically implausible 
values, it will be important later to confirm the model isn’t heavily relying on the Cholesterol 
feature for its decision making. 

Preprocessing was then finished with categorical encoding and feature scaling. 
Binary features (Sex, FastingBS, ExerciseAngina) were mapped using a custom function 
that applied consistent forward and reverse label encoding (e.g. female -> 0, male -> 1), 
allowing for later interpretation. Multiclass categorical features (ChestPainType, 
RestingECG, ST_Slope) were one-hot encoded, converting each category into a separate 
binary feature. Continuous features (Age, RestingBP, Cholesterol, MaxHR, Oldpeak) were 
standardized using z-score normalization with scikit-learn’s StandardScaler, ensuring 
models sensitive to feature scale could perform optimally. The training, validation, and test 
sets were saved as CSV files, while the trained imputer, scaler, and reverse mapping 
dictionary were saved using joblib, ensuring full reproducibility.  
 
 
3. INITIAL MODEL SELECTION 

To identify high-performing algorithms suitable for this dataset, a preliminary model 
benchmarking phase was conducted using PyCaret’s AutoML functionality. This allowed for 
quick comparison across an array of classification models ranked on F1 score. F1 score 
was chosen as the metric because its balance of precision and recall helps ensure both 
false positives and negatives are minimized. Depending on the nature of the target, a more 
specific strategy can be implemented (prioritizing low false positives for high-risk or low 
false negatives if testing is high cost). The top-performing models on this dataset were: 
Logistic Regression, K-Nearest Neighbors, Gradient Boosting Classifier, and XGBoost. 
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4. HYPERPARAMETER OPTIMIZATION 
Hyperparameter optimization was performed for each model using Optuna, which 

utilizes Bayesian optimization to hone in on the optimal hyperparameters. This is a more 
targeted and efficient approach than traditional Grid Search or Random Search methods. 
The hyperparameter search aimed to maximize ROC AUC, a robust metric for initially 
evaluating performance across all classification thresholds, and utilized stratified k-fold 
cross-validation. The best hyperparameters for each model were found to be: 

Model AUC Score Key Hyperparameters 

Logistic 
Regression 

0.9268 solver='lbfgs', penalty='l2', C=0.1869 

K-Nearest 
Neighbors 

0.9167 n_neighbors=15 

Gradient 
Boosting 

0.9444 max_depth=4, learning_rate=0.0213, n_estimators=187, 
subsample=0.924, min_samples_split=6, 
min_samples_leaf=10 

XGBoost 0.9426 learning_rate=0.0273, max_depth=3, n_estimators=255, 
subsample=0.581 

 
 
5. SUBGROUP AUDITING AND FAIRNESS-WEIGHTED RETRAINING 

After each model’s hyperparameters were optimized on the training set, subgroup 
auditing was performed to identify where the model was underperforming on the validation 
set. The validation set served as an intermediary evaluation set to support tuning efforts 
while preserving the test set for final performance evaluation. A custom subgroup audit 
function was written, flagging underperforming groups when AUC or F1 dropped below 
0.70, or when the Brier score exceeded 0.15. An example of the full custom audit read-out 
can be found at the bottom of this report. For example, in the Gradient Boosting Classifier 
(GBC) model, the female subgroup showed considerably lower performance than the male 
subgroup. This imbalance could result in biased outcomes if the model were deployed 
without mitigation. 

 
--- GBC Sex_group Unweighted --- 

Value N AUC F1 Score Brier Score Flags 

F 43 0.8374 0.5833 0.1664 High Brier, Low F1 

M 138 0.8676 0.8701 0.1281 OK 
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To address this, a fairness-weighted retraining strategy was explored. Specifically, 

higher weights were assigned to underperforming subgroups—in this case, females—during 
training to help the model better generalize to these populations. Optuna was used to 
optimize the weight applied to the subgroup over a search range of 1.0 to 5.0. Weights 
greater than 1 were chosen deliberately to increase the model’s focus on the specified 
subgroup. The optimization aimed to balance subgroup fairness and overall performance 
using a weighted metric: 0.2 * subgroup score + 0.8 * overall score. The optimal weight was 
then applied alongside the previously determined best hyperparameters to retrain the 
model. The overall and subgroup results after weighting the GBC model are found below. 
 

 
 
--- Gbc Classifier Parameters (Weighted) --- 
Validation AUC Score (with chosen weights): 0.8758 
Validation F1 Score (with chosen weights): 0.8317 
Chosen Subgroup Weights: {'Sex_group__F': 1.1542488411525558} 
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--- GBC Sex_group Weighted --- 

Value N AUC F1 Score Brier Score Flags 

F 43 0.822660 0.300000 0.276179 High Brier, Low F1 

M 138 0.867397 0.868571 0.146255 OK 

 
After retraining the GBC model with the chosen weight (1.1542 for females), model 

performance declined across both the overall and subgroup levels. Despite assigning 15% 
more attention to the female subgroup, its validation F1 score dropped, and the Brier score 
worsened. This degradation likely stems from the limited number of female samples, 
leading the model to overfit to the training data rather than learning meaningful patterns. 
SHAP analysis in the graph further revealed that the model tended to predict females as 
negative cases, reinforcing the idea that excessive weighting distorted the model’s 
generalization and increased bias. 

Given these results, the fairness-weighted version of the GBC model was discarded 
in favor of the original, unweighted model, which maintained higher overall performance. 
The unweighted model was used in all cases since, across the board, applying 
subgroup-specific weights often reduced global performance without delivering meaningful 
gains in subgroup fairness. Even attempts to re-tune hyperparameters under the new 
weights failed to resolve the underlying issue: a low n subgroup with few positive samples. 
As a result, adjusting subgroup-specific decision thresholds will be adopted later on in the 
pipeline as the alternative fairness strategy.  
 
 
6. CALIBRATION 

To improve the reliability of predicted probabilities from each model, a calibration 
step was conducted using Scikit-learn’s CalibratedClassifierCV. The goal of calibration is to 
ensure that predicted probabilities align closely with actual event frequencies—for example, 
a predicted 70% risk of heart disease should correspond to a 70% incidence rate among 
similar patients. 

Calibration quality was assessed using the Brier Score, which measures the mean 
squared error between predicted probabilities and actual outcomes. A lower Brier Score 
indicates better-calibrated predictions. Depending on the model, either isotonic regression 
(a non-parametric mapping) or sigmoid (a parametric logistic mapping) was used, along 
with Stratified K-Fold cross-validation. The calibrated models were then compared to their 
uncalibrated counterparts to determine whether calibration improved performance and 
lowered the Brier score, as shown in the GBC results example below. 
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— GBC Model Calibration Results — 

 

Metric Original Calibrated 

Brier Score 0.1035 0.1015 

ROC AUC 0.9311 0.9351 

 
In the case of the Gradient Boosting Classifier (GBC), the calibrated model 

demonstrated improved calibration and slightly better overall performance, and thus it was 
selected for downstream use. Calibration consistently improved reliability across all models 
and was used in all final versions, with the final Calibration strategies: 

● XGBoost = isotonic 
● GBC = sigmoid 
● Logistic Regression = isotonic 
● KNN = isotonic 
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7. THRESHOLD TUNING 
After calibration, each model underwent additional refinement through both global 

threshold tuning and subgroup-specific thresholding. The optimal global classification 
threshold was selected by evaluating F1 scores across a grid of values ranging from 0.20 to 
0.75. By default, a threshold of 0.50 means that patients with a predicted probability above 
50% are classified as having cardiovascular disease. However, adjusting this threshold 
allows the model to behave more liberally (lower threshold, more positives identified) or 
more conservatively (higher threshold, fewer false positives). 

To further improve fairness, subgroup-specific thresholds were introduced, 
particularly for underperforming or underrepresented groups. For these subgroups, a lower 
threshold than the global baseline was used to increase sensitivity and reduce the chance 
of false negatives (at the cost of more false positives). For example, if the global threshold 
is set to 0.50 but the subgroup threshold for female patients is 0.25, then any case identified 
as female will be evaluated against the 0.25 threshold instead. This is particularly important 
given that cardiovascular disease is more prevalent in male patients and may be 
under-predicted in females. By lowering the threshold for the female subgroup, the model 
becomes more inclusive and equitable in its predictions, improving diversity fairness without 
compromising overall performance. Each subgroup threshold was also selected using F1 
score optimization across a grid search.  
 
 
8. INDIVIDUAL MODEL TEST SET RESULTS 

Each final model was then evaluated on the unseen test set using its calibrated 
probabilities, optimized global threshold, and any applicable subgroup thresholds. Logistic 
Regression and XGBoost are the best-performing models exhibiting high F1 scores, and 
can be used to predict cardiovascular disease in new, unseen individual patients. They can 
also be further improved with a larger dataset or further optimization rebalancing. The 
results are summarized in the table below. 

Model 
Global 
Threshold 

Subgroup 
Thresholds 

ROC 
AUC F1 Score Accuracy 

Brier 
Score 

Confusion 
Matrix 
(TN/FN 
/FP/TP) 

Logistic 
Regression 0.6 

'Sex_group
', 'F': 0.25 0.9517 0.898 0.8897 0.0824 

55/6 
9/66 

KNN 0.45 

'Exercise 
Angina 
_group', 
'Y': 0.65 0.9293 0.8591 0.8456 0.0977 

51/10 
11/64 

GBC 0.35 
'Sex_group
', 'F': 0.25 0.9351 0.8645 0.8456 0.1013 

48/13 
8/67 

XGBoost 0.45  0.9411 0.9007 0.8897 0.0955 
53/8 
7/68 
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9. FINAL STACKED MODEL 

An ensemble model was also explored by stacking all previously optimized models 
into a single meta-learner. A stacking ensemble works by learning where each base model 
performs well or poorly, and then combining their predictions in a way that leverages their 
individual strengths. For example, if the K-Nearest Neighbors model is particularly effective 
at predicting outcomes for men over age 65, the stacked ensemble can prioritize its 
predictions for those specific cases, thus yielding a more accurate overall result. The 
StackingClassifier was constructed using the final versions of the four base models from 
earlier in the project: LogisticRegression, K-NearestNeighbors, GradientBoostingClassifier, 
and XGBoostClassifier. The final estimator (meta-model) was a Logistic Regression 
classifier tuned using Optuna to maximize F1 score on the validation set. There may be 
some data leakage or overfitting on the validation set, since the base models were already 
optimized and exposed to the validation set, however, the dataset was not large enough to 
hold out an additional validation set just for this step.  

A custom auditing script was used throughout the project for overall and subgroup 
performance evaluation to drive decisions on refinement, weighting, calibration, and 
threshold tuning. It was applied again to this final stacked model on the unseen test set to 
assess the final fairness and generalization results. Results of this audit helped verify 
whether the ensemble provided not only strong overall performance but also equitable 
treatment across diverse patient groups. For any flagged subgroups, it provides the 
respective confusion matrix, so the analyst can decipher the root cause of the issue for 
future refinement.  
 
 
 
 
--- Stacked Model Results on Final Test Set --- 
Best Params: {‘C’: 0.645, ‘max_iter’: 1000} 
chosen_global_thresh = 0.60 
ROC AUC: 0.9517 
F1 Score: 0.8980 
Confusion Matrix: 
 [[55  6] 
 [ 9 66]] 
Brier Score: 0.08243552550795459 
 
--- Sex_group --- 
Value   N      AUC       F1    Brier Flags 
    F  24 0.947368 0.800000 0.069288    OK 
    M 112 0.944728 0.905109 0.085253    OK 
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--- ExerciseAngina_group --- 
Value  N      AUC       F1    Brier Flags 
    N 87 0.928571 0.779661 0.102751    OK 
    Y 49 0.915909 0.977273 0.046364    OK 
 
--- FastingBS_group --- 
 Value   N      AUC       F1    Brier Flags 
     0 104 0.947173 0.860215 0.087187    OK 
     1  32 0.944444 0.962963 0.066994    OK 
 
--- AgeGroup --- 
Value  N      AUC       F1    Brier Flags 
  30s 16 1.000000 0.800000 0.055271    OK 
  60s 25 0.855263 0.900000 0.115575    OK 
  40s 33 0.982143 0.909091 0.054568    OK 
  50s 58 0.942728 0.916667 0.086029    OK 
 
--- RestingBPGroup --- 
     Value  N      AUC       F1    Brier      Flags 
[160, 180) 14 0.866667 0.842105 0.152163 High Brier 
[120, 140) 65 0.963542 0.885246 0.075742         OK 
[100, 120) 17 0.992857 0.888889 0.090414         OK 
[140, 160) 36 0.977273 0.933333 0.070802         OK 
 
--- CholesterolGroup --- 
     Value  N      AUC       F1    Brier Flags 
[250, 300) 24 0.923077 0.846154 0.098621    OK 
[200, 250) 68 0.953140 0.906977 0.088102    OK 
[150, 200) 23 0.960784 0.909091 0.053924    OK 
[300, 350) 11 1.000000 1.000000 0.025579    OK 
 
--- MaxHRGroup --- 
     Value  N      AUC       F1    Brier  Flags 
[150, 180) 48 0.945055 0.666667 0.093102 Low F1 
 [90, 120) 21 0.844444 0.903226 0.105138     OK 
[120, 150) 60 0.943182 0.943820 0.072251     OK 
  --- Confusion Matrix for MaxHRGroup: [150, 180) (Flagged) --- 
  True Negative (0,0): 34, False Positive (0,1): 1 
  False Negative (1,0): 6, True Positive (1,1): 7 
[[34  1] 
 [ 6  7]] 
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--- OldpeakGroup --- 
     Value  N      AUC       F1    Brier Flags 
[0.0, 1.0) 78 0.962847 0.857143 0.075850    OK 
[1.0, 2.0) 32 0.883117 0.857143 0.132959    OK 
[2.0, 3.0) 15 1.000000 1.000000 0.017870    OK 
 
--- ChestPainType_group --- 
Value  N      AUC       F1    Brier Flags 
  NAP 32 0.931250 0.833333 0.094838    OK 
  ASY 71 0.914456 0.920354 0.085293    OK 
  ATA 28 1.000000 1.000000 0.016930    OK 
 
--- RestingECG_group --- 
 Value  N      AUC       F1    Brier      Flags 
   LVH 18 0.883117 0.705882 0.178807 High Brier 
Normal 91 0.960049 0.907216 0.080430         OK 
    ST 27 1.000000 0.969697 0.024948         OK 
 
--- ST_Slope_group --- 
Value  N      AUC       F1    Brier  Flags 
   Up 63 0.945385 0.600000 0.079618 Low F1 
 Flat 61 0.852594 0.944444 0.085158     OK 
 Down 12 0.925926 0.947368 0.083392     OK 
  --- Confusion Matrix for ST_Slope_group: Up (Flagged) --- 
  True Negative (0,0): 49, False Positive (0,1): 1 
  False Negative (1,0): 7, True Positive (1,1): 6 
[[49  1] 
 [ 7  6]] 
 
--- Overall Model Performance --- 
Confusion matrix: 
 [[55  6] 
 [ 9 66]] 
Classification report: 
               precision    recall  f1-score   support 
 
           0       0.86      0.90      0.88        61 
           1       0.92      0.88      0.90        75 
 
    accuracy                           0.89       136 
   macro avg       0.89      0.89      0.89       136 
weighted avg       0.89      0.89      0.89       136 
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Accuracy: 0.8897 
ROC AUC (probabilities): 0.9517 
Brier Score (probabilities): 0.0824 
 
--- Error Analysis of Misclassified Samples --- 
Total True Negatives (TN): 55 
Total False Positives (FP): 6 
Total False Negatives (FN): 9 
Total True Positives (TP): 66 
 
--- Descriptive Statistics for False Positives (FP) --- 
             Age       Sex  ...   y_proba  y_pred_subgrp 
count   6.000000  6.000000  ...  6.000000            6.0 
mean   62.833333  0.833333  ...  0.805012            1.0 
std     4.996666  0.408248  ...  0.092686            0.0 
min    58.000000  0.000000  ...  0.675951            1.0 
25%    59.750000  1.000000  ...  0.765758            1.0 
50%    62.000000  1.000000  ...  0.790557            1.0 
75%    63.500000  1.000000  ...  0.848920            1.0 
max    72.000000  1.000000  ...  0.947143            1.0 
 
--- Descriptive Statistics for False Negatives (FN) --- 
             Age       Sex  ...   y_proba  y_pred_subgrp 
count   9.000000  9.000000  ...  9.000000            9.0 
mean   49.222222  0.888889  ...  0.376727            0.0 
std    10.556725  0.333333  ...  0.150967            0.0 
min    34.000000  0.000000  ...  0.111265            0.0 
25%    43.000000  1.000000  ...  0.245103            0.0 
50%    50.000000  1.000000  ...  0.436618            0.0 
75%    55.000000  1.000000  ...  0.436618            0.0 
max    66.000000  1.000000  ...  0.577599            0.0 
 
[8 rows x 22 columns] 
 
--- SHAP Summary Plot for Overall Feature Importance --- 
 
Top 10 features by importance: 
ST_Slope_Up          0.472203 
ChestPainType_ASY    0.471591 
ST_Slope_Flat        0.411336 
Oldpeak              0.398454 
ExerciseAngina       0.376297 



Kevin O’Donnell 
June 1st, 2025 

Sex                  0.344455 
FastingBS            0.285880 
MaxHR                0.190866 
ChestPainType_ATA    0.168987 
ChestPainType_NAP    0.142199 
dtype: float64 
 
Bottom 10 features by importance: 
ChestPainType_ATA    0.168987 
ChestPainType_NAP    0.142199 
Cholesterol          0.137062 
Age                  0.124388 
RestingBP            0.094273 
RestingECG_ST        0.022359 
ST_Slope_Down        0.019578 
RestingECG_LVH       0.014191 
ChestPainType_TA     0.003710 
RestingECG_Normal    0.003034 
dtype: float64 
 
Highly correlated pairs (>|0.85|): 
  None 


